9. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in figure. If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.
10. From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm^{2}
11. A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m , find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of Rs 500 per m^{2}. (Note that the base of the tent will not be covered with canvas.)
12. A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm . Find its surface area.
13. A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter d of the hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.

A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid.

A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . Find the total surface area of the toy.

Question: 2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm . Find the inner surface area of the vessel.

Question: 1.2 cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.

Answers

Surface Area And Volume

Exercise 1

Question: 1. 2 cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.

$$
\begin{aligned}
& \text { Solution: Side of Cube }=\sqrt[3]{\text { Volume }} \\
& =\sqrt[3]{64}=4 \mathrm{~cm} \\
& \text { Length of } \mathrm{New} \text { cuboid }=8 \mathrm{~cm} \\
& \text { Height }=4 \mathrm{~cm} \\
& \text { Width }=4 \mathrm{~cm} \\
& \text { Surface Area }=2(l b+l h+b h) \\
& =2(8 \times 4+8 \times 4+4 \times 4)=180 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

Question: 2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm . Find the inner surface area of the vessel.

Solution: Radius $=7 \mathrm{~cm}$
Height of cylindrical portion $=13-7=6 \mathrm{~cm}$
Curved Surface Area of Cylindrical Portion $=2 \pi \times r h$
$=2 \times \frac{22}{7} \times 7 \times 6=264 \mathrm{sq} \mathrm{cm}$
Curved Surface Area of Hemispherical Portion $=2 \pi \times r^{2}$
$=2 \times \frac{22}{7} \times 7 \times 7=308 \mathrm{sq} \mathrm{cm}$
Total Surface Area $=308+264=572 \mathrm{sq} \mathrm{cm}$
3. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . Find the total surface area of the toy.

Solution: Radius $=3.5 \mathrm{~cm}$
Height of Cone $=15.5-3.5=12 \mathrm{~cm}$
Slant Height of Cone $=\sqrt{12^{2}+3.5^{2}}=\sqrt{144+12.25}=\sqrt{156.25}=12.5 \mathrm{~cm}$
Curved Surface Area of Cone $=\pi \times r \times l$
$=\frac{22}{7} \times 3.5 \times 12.5=137.5$
Curved Surface Area of Hemisphere $=2 \pi \times r^{2}$
$=2 \times \frac{22}{7} \times 3.5 \times 3.5=77$
Total Curved Surface Area $=137.5+77=214.5 \mathrm{sq} \mathrm{cm}$
4. A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid.

Solution: The greatest diameter $=$ Side of The Cube $=7 \mathrm{~cm}$
Surface Area
$=$ Surface Area of Cube - Surface Area of Base of Hemisphere + Curved Surface Area of Hemisphere
Surface Area of Cube $=6 \times$ Side $^{2}=6 \times 49=294 \mathrm{sq} \mathrm{cm}$
Surface Area of Base of Hemisphere
$=\pi \times r^{2}=\frac{22}{7} \times 3.5 \times 3.5=38.5 \mathrm{sq} \mathrm{cm}$
Curved Surface Area of Hemipshere $=2 \times 38.5=77 \mathrm{sq} \mathrm{cm}$
Total Surface Area $=294-38.5+77=332.5 \mathrm{sq} \mathrm{cm}$
5. A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter d of the hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.

Solution: This question can be solved like previous question. Here the curved surface of the hemisphere is a depression, unlike a projection in the previous question.
Total Surface Area $=6 d^{2}-\pi \times\left(\frac{d}{2}\right)^{2}+2 \pi \times\left(\frac{d}{2}\right)^{2}=6 d^{2}+\pi \times\left(\frac{d}{2}\right)^{2}$
6. A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm . Find its surface area.

Solution: Height of Cylinder $=14-5=9 \mathrm{~cm}$
Radius $=2.5$
Curved Surface Area of Cylinder $=2 \times \pi \times r \times h$
$=2 \times \pi \times 2.5 \times 9=45 \pi$
Curved Surface Area of Two Hemispheres $=4 \times \pi \times r^{2}$
$=4 \times \pi \times 2.5^{2}=25 \pi$
Total Curved Surface Area $=25 \pi+45 \pi=220 \mathrm{sq} \mathrm{cm}$
7. A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m , find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of Rs 500 per m². (Note that the base of the tent will not be covered with canvas.)

Solution: Curved Surface Area of Cylinder $=2 \times \pi \times r \times h$
$=2 \times \pi \times 2 \times 2.1=8.4 \pi$
Curved Surface Area of Cone $=\pi \times r \times l$
$=\pi \times 2 \times 2.8=5.6 \pi$
Total Curved Surface Area $=5.6 \pi+8.4 \pi=14 \times \frac{22}{7}=44$
Cost of Canvas $=500 \times 44=22000$ Rupees
8. From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm^{2}.

Solution: Total Surface Area of Cylinder
$=2 \times \pi \times r^{2}+2 \times \pi \times r \times h=2 \pi \times r(r+h)$
$=2 \pi \times 0.7(0.7+2.4)=4.34 \pi$
Slant Height of Cone
$=\sqrt{2.4^{2}+0.7^{2}}=\sqrt{5.76+0.49}=\sqrt{6.25}=2.5$
Total Surface Area of Cone $=\pi \times r^{2}+\pi \times r \times l=\pi \times r(r+l)$
$=\pi \times 0.7(0.7+2.5)=2.24 \pi$
Remaining Surface Area of Structure
$=4.34 \pi+2.24 \pi-0 . .49 \pi=6.09 \times \frac{22}{7}=19.14 \mathrm{sq} \mathrm{cm}$
9. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in figure. If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.

Solution: Curved Surface Area of Cylinder $=2 \times \pi \times r \times h$ $=2 \times \pi \times 3.5 \times 10=70 \pi$
Curved Surface Area of Two Hemispheres $=4 \times \pi \times r^{2}$
$=4 \times \pi \times 3.5 \times 3.5=49 \pi$
Total Surface Area $=70 \pi+49 \pi=119 \pi=374 \mathrm{sq} \mathrm{cm}$

