28/07/2023, 22:53

## **ATUL CLASSES**

TestLo

Test / Exam Name: Atul Classes Standard: 11th Science Subject: Physics

Student Name: Section: Roll No.:

Questions: 100 Time: 01:00 hh:mm Negative Marks: 0 Marks: 100

Q1. A ball is thrown up in the sky. After reaching a height, the ball falls back. What can be

1 Mark

said about the average velocity?

A It is non zero

B It is zero

C It is greater than zero

**D** It is less than zero

Q2. What kind of motion is rectilinear motion?

A One dimensional B Two dimensional C Three dimensional D Zero dimensional

Q3. Which of the following statements is incorrect?

1 Mark

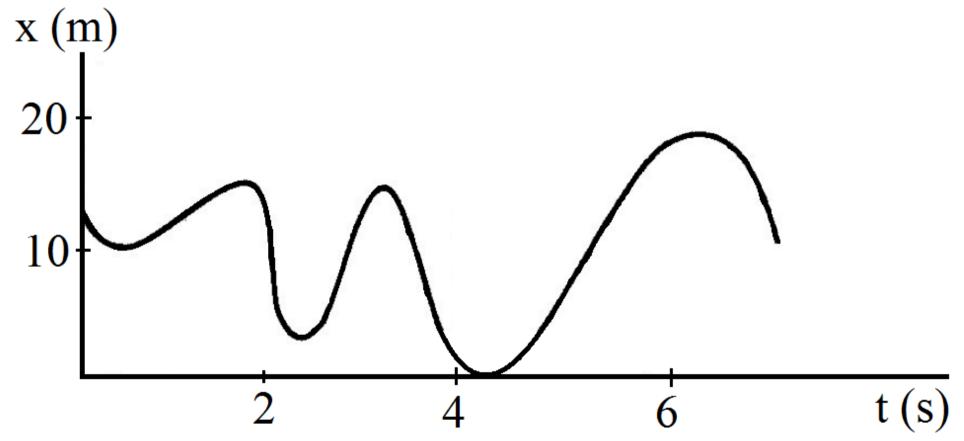
Α

In one dimension motion, the velocity and the acceleration of an object are always along the same line.

В

In two or three dimensions, the angle between velocity and acceleration vectors may have any value between 0° and 180°.

C


The kinematic equations for uniform acceleration can be applied in case of uniform circular motion.

D

The resultant acceleration of an object in circular motion is towards the centre only if the speed is constant.

**Q4.** Figure shows the position of a particle moving on the X-axis as a function of time.

1 Mark



- **A** The particle has come to rest 6 times.
- **B** The maximum speed is at t = 6s.
- **C** The velocity remains positive for t = 0 to t = 6s.
- **D** The average velocity for the total period shown is negative.

**Q5.** Which of the following terms does not go well with the motion of a bus on a crowded road.

1 Mark

- A Uniform velociity
- **B** Variable velocity
- C Variable acceleration

**D** Variable speed

| Q6.                                                                                                                                                                                                                | <b>Q6.</b> A ball is thrown up in the sky, at what position will the instantaneous speed be minimum?                                                                                                                                                                                                                       |                                                     |                                             |                          |        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------|--------|--|--|--|
|                                                                                                                                                                                                                    | <ul><li>A Initial position</li><li>D After covering one</li></ul>                                                                                                                                                                                                                                                          | <b>B</b> Final position fourth of the whole tra     | •                                           | igh the whole trajectory |        |  |  |  |
|                                                                                                                                                                                                                    | 7. An object starts 5m from origin and moves with an initial velocity of 5ms <sup>-1</sup> and has an acceleration of 2ms <sup>-2</sup> . After 10sec, the object is how far from the origin?                                                                                                                              |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> 150m                                                                                                                                                                                                                                                                                                              | <b>B</b> 145m                                       | <b>C</b> 155m                               | <b>D</b> 55m             |        |  |  |  |
|                                                                                                                                                                                                                    | 8. Consider two observers moving with respect to each other at a speed v along a straight line. They observe a block of mass m moving a distance I on a rough surface. The following quantities will be same as observed by the two observers.                                                                             |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | A Kinetic energy of t C Total work done or                                                                                                                                                                                                                                                                                 |                                                     | <b>B</b> Work done <b>D</b> Acceleration of | •                        |        |  |  |  |
| <b>Q9.</b> An iron sphere of mass 10kg has the same diameter as an aluminium sphere of mass is 3.5kg. Both spheres are dropped simultaneously from a tower. When they are 10m above the ground, the have the same: |                                                                                                                                                                                                                                                                                                                            |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> Acceleration                                                                                                                                                                                                                                                                                                      | <b>B</b> Momenta                                    | <b>C</b> Potential energy                   | <b>D</b> Kinetic energy  |        |  |  |  |
| Q10                                                                                                                                                                                                                | . For the one-dimension                                                                                                                                                                                                                                                                                                    | onal motion, described                              | by $x = t - sint$ .                         |                          | 1 Mark |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> x (t) > 0 for all t > <b>D</b> v (t) lies between                                                                                                                                                                                                                                                                 | 0. <b>B</b> v (t) > 0 f 0 and 2.                    | or all t > 0. <b>C</b> a                    | (t) > 0 for all t > 0.   |        |  |  |  |
| Q11.                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                            | alloon that is descendin<br>stone from the point of |                                             | 12m/ s. the              | 1 Mark |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> 490m                                                                                                                                                                                                                                                                                                              | <b>B</b> 510m                                       | <b>C</b> 610m                               | <b>D</b> 725m            |        |  |  |  |
| Q12.                                                                                                                                                                                                               | If the velocity of a bo                                                                                                                                                                                                                                                                                                    | ody does not change, it                             | s acceleration is:                          |                          | 1 Mark |  |  |  |
|                                                                                                                                                                                                                    | A Zero                                                                                                                                                                                                                                                                                                                     | <b>B</b> Infinite                                   | <b>C</b> Unity                              | <b>D</b> None of these   |        |  |  |  |
| Q13                                                                                                                                                                                                                | <b>13.</b> A body thrown vertically up from the ground passes the height 10.2m twice at an interval of 10s. What was its initial velocity? (in m/s)                                                                                                                                                                        |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> 52                                                                                                                                                                                                                                                                                                                | <b>B</b> 53                                         | <b>C</b> 51                                 | <b>D</b> 49              |        |  |  |  |
| Q14                                                                                                                                                                                                                | <b>Q14.</b> A body X is projected upwards with a velocity of 98ms <sup>-1</sup> , after 4s, a second body Y is also projected upwards with the same Y is also projected upwards with the same initial velocity. Two bodies will meet after:                                                                                |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> 8s                                                                                                                                                                                                                                                                                                                | <b>B</b> 10s                                        | <b>C</b> 12s                                | <b>D</b> 14s             |        |  |  |  |
| Q15.                                                                                                                                                                                                               | Q15. A driver takes 0.20s to apply the brakes after he sees a need for it. This is called the reaction time of the driver. If he is driving a car at a speed of 54km/ h and the brakes causes a deceleration of 6.0 m/ s <sup>2</sup> , find the distance traveled by the car after he sees the need to put the brakes on. |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> 18.63m                                                                                                                                                                                                                                                                                                            | <b>B</b> 20m                                        | <b>C</b> 26.85m                             | <b>D</b> 27.67m          |        |  |  |  |
| Q16.                                                                                                                                                                                                               | A spring with one end and released:                                                                                                                                                                                                                                                                                        | 1 Mark                                              |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <ul> <li>A Magnitude of acceleration, when just released is maximum.</li> <li>B Magnitude of acceleration, when at equilibrium position, is maximum.</li> <li>C Speed is maximum when mass is at equilibrium position.</li> <li>D Magnitude of displacement is always maximum whenever speed is minimum.</li> </ul>        |                                                     |                                             |                          |        |  |  |  |
| Q17.                                                                                                                                                                                                               | A man of mass 60kg and a boy of mass 30kg are standing together on frictionless ice surface. If they push each other apart man moves away with a speed of 0.4m/ s relative to ice. After 5sec they will be away from each other at a distance of.                                                                          |                                                     |                                             |                          |        |  |  |  |
|                                                                                                                                                                                                                    | <b>A</b> 9.0m                                                                                                                                                                                                                                                                                                              | <b>B</b> 3.0m                                       | <b>C</b> 6.0m                               | <b>D</b> 30,             |        |  |  |  |

| Q18. | What happen to the instantaneous velocity in a non - uniformly accelerated motion?                                                                                                                                   |                                                                                                                      |                               |                               |        |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------|--|--|
|      | <ul><li>A It increases</li><li>D It remains constant</li></ul>                                                                                                                                                       | <b>B</b> It decreases                                                                                                | <b>C</b> It varies            | as the acceleration           |        |  |  |
| Q19. | Velocity - time graph of                                                                                                                                                                                             | a body with uniform v                                                                                                | elocity is a straight line    | :                             | 1 Mark |  |  |
|      | A Parallel to x - axis                                                                                                                                                                                               | <b>B</b> Parallel to y - axis                                                                                        | <b>C</b> Inclined to x - axis | <b>D</b> Inclined to y - axis |        |  |  |
| Q20. | Which of the following can be used to describe how fast an object is moving along with the direction of motion at a given instant of time?                                                                           |                                                                                                                      |                               |                               |        |  |  |
|      | A Instantaneous velocity  B Instantaneous speed  C Average velocity  D Average speed                                                                                                                                 |                                                                                                                      |                               |                               |        |  |  |
| Q21. | Mark the correct statements:                                                                                                                                                                                         |                                                                                                                      |                               |                               |        |  |  |
|      | A The magnitude of the velocity of a particle is equal to its speed.  B                                                                                                                                              |                                                                                                                      |                               |                               |        |  |  |
|      | The magnitude of avera                                                                                                                                                                                               | e magnitude of average velocity in an interval is equal to its average speed in that interval                        |                               |                               |        |  |  |
|      | It is possible to have a saverage speed is not ze                                                                                                                                                                    | t is possible to have a situation in which the speed of a particle is always zero but the average speed is not zero. |                               |                               |        |  |  |
|      | It is possible to have a situation in which the speed of the particle is never zero but the average speed in an interval is zero.                                                                                    |                                                                                                                      |                               |                               |        |  |  |
| Q22. | An object may have:                                                                                                                                                                                                  |                                                                                                                      |                               |                               | 1 Mark |  |  |
|      | <ul><li>A Varying speed with</li><li>B Varying velocity with</li><li>C Nonzero acceleration</li><li>D Nonzero acceleration</li></ul>                                                                                 |                                                                                                                      |                               |                               |        |  |  |
| Q23. | A stone drop from heig<br>Moon and drop freely t<br>'g' of Moon is 1/6 times                                                                                                                                         | 1 Mark                                                                                                               |                               |                               |        |  |  |
|      | <b>A</b> $\sqrt{6}$ second                                                                                                                                                                                           | <b>B</b> 9 second                                                                                                    | $\mathbf{C} \sqrt{3}$ second  | <b>D</b> 6 second             |        |  |  |
| Q24. | Which of the following                                                                                                                                                                                               | types of motion cannot                                                                                               | t describe the motion o       | f a clock's hands?            | 1 Mark |  |  |
|      | A Rectilinear                                                                                                                                                                                                        | <b>B</b> Circular                                                                                                    | <b>C</b> Periodic             | <b>D</b> Harmonic             |        |  |  |
| Q25. | A body starts from rest and moves with uniform acceleration for 3s. It then decelerates uniformly for 2s. and stops. If the deceleration is $3 \text{ ms}^{-2}$ the maximum velocity of the body is ms <sup>-1</sup> |                                                                                                                      |                               |                               |        |  |  |
|      | <ul><li>A Zero</li><li>D Cannot be determined</li></ul>                                                                                                                                                              | <b>B</b> 2                                                                                                           | <b>C</b> 6                    |                               |        |  |  |
| Q26. | A particle is found to be at rest when seen from a frame $S_1$ and moving with a constant velocity when seen from another frame $S_2$ . Mark out the possible options.                                               |                                                                                                                      |                               |                               |        |  |  |
|      | A Both the frames are inertal.B $S_1$ is inertial and $S_2$ is noninertial.C $S_1$ is noninertial and $S_2$ is inertial.D None of these.                                                                             |                                                                                                                      |                               |                               |        |  |  |
| Q27. | Which of the following statement is correct?                                                                                                                                                                         |                                                                                                                      |                               |                               |        |  |  |
|      | <ul> <li>A Average speed &gt; Instantaneous speed.</li> <li>B Average speed &gt;= Instantaneous speed.</li> <li>D Average speed &lt; Instantaneous speed.</li> </ul>                                                 |                                                                                                                      |                               |                               |        |  |  |
| Q28. | The rate of change of velocity is:                                                                                                                                                                                   |                                                                                                                      |                               |                               |        |  |  |
|      | A Force                                                                                                                                                                                                              | <b>B</b> Momentum                                                                                                    | <b>C</b> Acceleration         | <b>D</b> Displacement         |        |  |  |
| Q29. |                                                                                                                                                                                                                      |                                                                                                                      |                               |                               | 1 Mark |  |  |

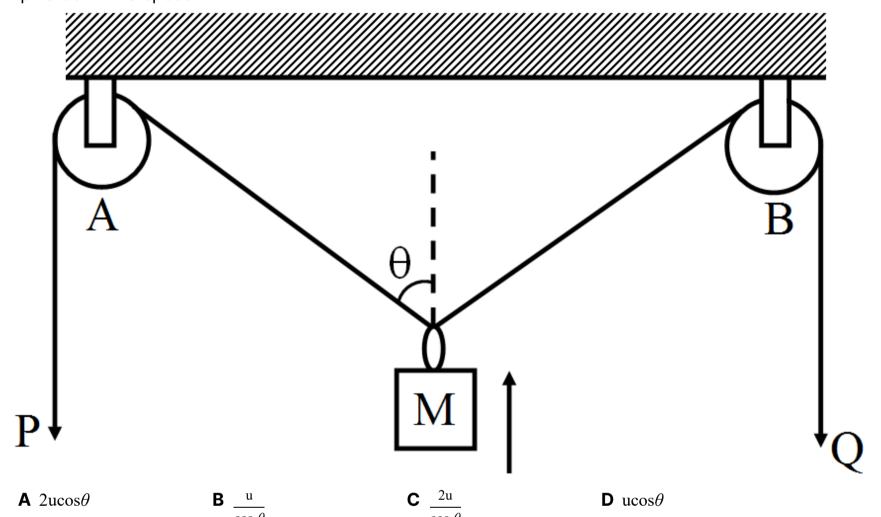
Two stones are dropped down simultaneously from different heights. At the starting

| •                                                                                                                                                                                                                                                            | istance between the be $(g = 10 \text{ms}^{-2})$ .     | nem is 30cm. After 1                          | 1s, the distance      | between the two                                                                          |              |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|--------------|--------|
| <b>A</b> 10cm                                                                                                                                                                                                                                                | <b>B</b> 200                                           | om <b>C</b>                                   | 30cm                  | <b>D</b> 0cm                                                                             |              |        |
|                                                                                                                                                                                                                                                              |                                                        |                                               |                       | nat acceleration mean<br>er you go." Who is rig                                          |              | 1 Mark |
| A A                                                                                                                                                                                                                                                          |                                                        | <b>B</b> B                                    | C Both A a            | nd B <b>D</b> None o                                                                     | of these     |        |
|                                                                                                                                                                                                                                                              | ne is released with<br>leration and direction          |                                               | m an upwardy m        | oving left. Find out th                                                                  | ne           | 1 Mark |
|                                                                                                                                                                                                                                                              | in upward direction in downward direct                 |                                               | vnward directior      | . <b>C</b> (g - a) in upwar                                                              | d direction. |        |
| <b>Q32.</b> Whic                                                                                                                                                                                                                                             | ch of the following a                                  | are obtained by divi                          | ding total displa     | cement by total time                                                                     | taken?       | 1 Mark |
|                                                                                                                                                                                                                                                              | verage velocity<br>peed                                | <b>B</b> Instantan                            | eous velocity         | <b>C</b> Uniform veloc                                                                   | city         |        |
| <b>Q33.</b> The                                                                                                                                                                                                                                              | velocity of a particl                                  | e is zero at t = 0.                           |                       |                                                                                          |              | 1 Mark |
| C II                                                                                                                                                                                                                                                         | the acceleration is                                    |                                               | t = 10s, the spe      | eleration at t = 0 may<br>ed is also zero in this i<br>n is also zero in this ir         | interval.    |        |
| Q34. A bo<br>Heig<br>(take                                                                                                                                                                                                                                   | ground.                                                | 1 Mark                                        |                       |                                                                                          |              |        |
| <b>A</b> 6                                                                                                                                                                                                                                                   | 0                                                      | <b>B</b> 45                                   | <b>C</b> 80           | <b>D</b> 50                                                                              |              |        |
|                                                                                                                                                                                                                                                              |                                                        | particle is given by a<br>covered by the part |                       | e x is in metres and t i<br>conds is:                                                    | in           | 1 Mark |
| <b>A</b> 4                                                                                                                                                                                                                                                   | m.                                                     | <b>B</b> 8m.                                  | <b>C</b> 12m.         | <b>D</b> 16m.                                                                            |              |        |
| x-ax                                                                                                                                                                                                                                                         | is the second with a                                   | a velocity 6ms <sup>–1</sup> aliı             | ng negative y - a     | locity 2ms <sup>–1</sup> along po<br>exis. Find the velocity<br>y always lie in a straiç | of the       | 1 Mark |
| <b>A</b> -                                                                                                                                                                                                                                                   | $3\sqrt{3}$                                            | <b>B</b> $3\sqrt{2}$                          | <b>c</b> $-3\sqrt{2}$ | <b>D</b> $2\sqrt{2}$                                                                     |              |        |
| Q37. A man runs at a speed of 4.0m/s to overtake a standing bus. When he is 6.0m behind the door (at $t = 0$ ), then bus moves forward and continues with a constant acceleration of 1.2m/s <sup>2</sup> . The man shall access the door at time t equal to: |                                                        |                                               |                       |                                                                                          |              |        |
| <b>A</b> 5<br><b>D</b> T                                                                                                                                                                                                                                     | .2s<br>he man shall never                              | <b>B</b> 4.3s gain the door                   |                       | <b>C</b> 2.3s                                                                            |              |        |
| Q38. An observer finds the magnitudes of the acceleration of two bodies to be the same.  This necessary implies that the two bodies.                                                                                                                         |                                                        |                                               |                       |                                                                                          |              |        |
| B A<br>C A<br>D                                                                                                                                                                                                                                              | re accelerated with                                    | with constant veloc<br>n respect to each of   | ther.                 |                                                                                          |              |        |
| May                                                                                                                                                                                                                                                          | be at rest, moving                                     | with constant veloc                           | cities or accelera    | ted with respect to e                                                                    | ach other.   |        |
|                                                                                                                                                                                                                                                              | r moves for 60s cov<br>leration in m/ s <sup>2</sup> ? | ering a distance of                           | 3600m with ze         | ro initial velocity. Wha                                                                 | at is the    | 1 Mark |
| <b>A</b> 2                                                                                                                                                                                                                                                   |                                                        | <b>B</b> 2.5                                  | <b>C</b> 3            | <b>D</b> 4.5                                                                             |              |        |
| <b>Q40.</b> A bo                                                                                                                                                                                                                                             | dy travels 200cm ir                                    | n the first two seco                          | nds and 220cm         | in the next 4 seconds                                                                    | s with       | 1 Mark |

same acceleration. The velocity of the body at the end of the 7th second is:

28/07/2023, 22:53

- **A** 10cm/s **B** 5cm/s **C** 12cm/s **D** 2cm/s
- **Q41.** A car is travelling in the north direction. To stop, it produces a deceleration of 60m/ s<sup>2</sup>.


  1 Mark
  Which of the following is a correct representation for the deceleration?
  - **A** 60m/ s<sup>2</sup> Northwards
- **B** 60m/ s<sup>2</sup> Southwards
- C 60m/ s<sup>2</sup> Eastwards

- **D** 60m/ s<sup>2</sup> Westwards
- **Q42.** A ball of mass 0.2kg is thrown vertically upwards by applying a force by hand. If the hand moves 0.2m which applying the force and the ball goes upto 2m height further, find the magnitude of the force. Consider  $g = 10m/s^2$

1 Mark

- **A** 22N
- **B** 4N
- **C** 16N
- **D** 20N
- **Q43.** In the arrangement shown in figure, the ends P and Q of an inextensible string move downwards with uniform speed u. Pulleys A and B are fixed. The mass M moves upwards with a speed:





Q44. The rate of change of velocity of an object with respect to time is called .........

1 Mark

- **A** Momentum
- **B** Displacement
- **C** Acceleration
- **D** Impulse
- **Q45.** Which of the following best define the acceleration of a particle:

1 Mark

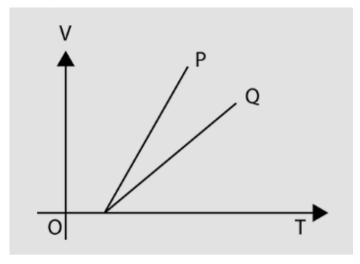
- **A** The rate of change of velocity. **B** Only e
- **B** Only experienced during a change of direction.
  - **C** Only experienced during a change of speed.
  - **D** Calculated by multiplying speed by velocity.
- **E** Always constant.
- **Q46.** An object thrown vertically upwards with a velocity of 25m/ s takes 4sec to reach the thrower. What is displacement of the object?

1 Mark

- **A** 100m
- **B** 180m
- **C** 0m
- **D** 120m
- Q47. Rana moves with uniform velocity on a bike. He throws a stone in air, the stone falls:

1 Mark

- A Back in his hands
- **B** In front of him
- C At the back of him


- **D** Cannot be predicted
- **Q48.** A truck requires 3Hrs to complete a journey of 150km, what is the average speed?

1 Mark

- **A** 50km/ hr
- **B** 25km/ hr
- **C** 15km/ hr
- **D** 10km/ hr
- **Q49.** Figure shows the V–T graph for two particles P and Q. The relative velocity of P w.r.t. Q is:

1 Mark

28/07/2023, 22:53



A Is zero.

**B** Is non-zero but constant

**C** Continuously decreases

**D** Continuously increases

**Q50.** A uniformly accelerated body has \_\_\_\_.

1 Mark

A Constant speed

**B** Constant velocity

**C** Constant force

**D** Constant momentum

**Q51.** A particle is dropped from a tower. It is found that it travels 55m in the last second of its journey. Then height of the tower is  $(g = 10m/s^2g = 10m/s^2)$ ?

1 Mark

**A** 125m

**B** 180m

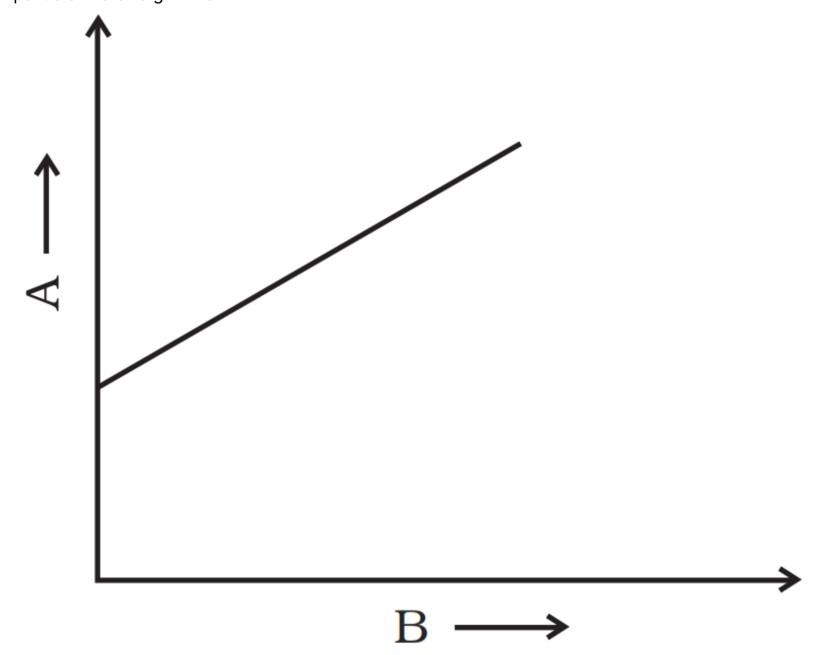
**C** 100m

**D** 55m

Q52. Which force can possibly act on a body moving in a straight line?

1 Mark

A Tangential force


**B** Friction force

**C** Centrifugal force

**D** Centripetal force

**Q53.** The variation of quantity A with quantity B, plotted in Fig. describes the motion of a particle in a straight line.

1 Mark



**A** Quantity B may represent time.

**B** Quantity A is velocity if motion is uniform.

**C** Quantity A is displacement if motion is uniform.

**D** Quantity A is velocity if motion is uniformly accelerated.

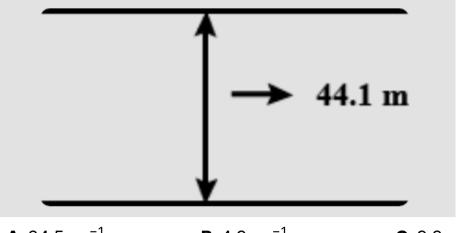
**Q54.** The changes in displacement in three consecutive instances are 5m, 4m, 11m, the total time taken is 5s. What is the average velocity in m/s?

1 Mark

**A** 1

**B** 4

**C** 7


**D** 6

TestLo

28/07/2023, 22:53 **Q55.** The velocity of a truck changes form 3m/s to 5m/s in 5s. What is the acceleration in 1 Mark  $m/s^2$ ? **A** 0.4 **B** 0.5 **C** 4.0 **D** 5.0 **Q56.** A hollow iron ball (A) and a solid iron ball (B) and cricket ball (C) are dropped from the 1 Mark same height. Which among the three balls reaches the ground first? Assuming there is no resistance due to air. C C **A** A **B** B **D** All the three balls reaches ground simultaneously. **Q57.** Area under a speed - time graph gives: 1 Mark **A** The time taken by a moving object. **B** The distance travelled by a moving object. **C** The acceleration of a moving object. **D** The retardation of a moving object. **Q58.** In a uniformly accelerated motion, the speed varies from 0 to 20m/ s in 4s. What is the 1 Mark average speed during the motion? **C** 0m/s **B** 20m/s **A** 10m/s **D** 15m/s **Q59.** A graph of x versus t is shown in Fig. Choose correct alternatives from below: 1 Mark **A** The particle was released from rest at t = 0. **B** At B, the acceleration a > 0. **C** At C, the velocity and the acceleration vanish. **D** Average velocity for the motion between A and D is positive. **E** The speed at D exceeds that at E. **Q60.** How many variables are required to define the position of a body in space? 1 Mark **B** 2 **C** 1 **A** 3 **D** 0 **Q61.** A stone is dropped into the water from a bridge 44.1m above the water. another stone 1 Mark

is thrown vertically downward 1second later. both strike the water simultaneously. then

initial speed of the second stone is:



**A** 24.5ms<sup>-1</sup>

**B** 4.9ms<sup>-1</sup>

 $\mathbf{C} \; 9.8 \, \mathrm{ms}^{-1}$ 

**D**  $12.25 \text{ms}^{-1}$ 

Q62. Two cars OF SAME LENGTH move in the same direction along parallel roads. One of them is a 100m long travelling with a velocity of 7.5 ms-1. How long will it take for the first car to overtake the second car?

**A** 26s

**B** 40s

**C** 60s

**D** 80s

**Q63.** When a body is in the state of complete rest, what kind of energy does it possess?

1 Mark

1 Mark

A Potential energy

**B** Kinetic energy

**C** Total energy

**D** Heat energy

**Q64.** A car is moving in a spiral starting from the origin with uniform angular velocity. What can be said about the instantaneous velocity?

1 Mark

A It increases with time

**B** It decreases with time

C It remains constant

**D** It does not depend on time

**Q65.** A bullet is fired from the cart vertically at the same instant cart begins to accelerate forward. Which of the following best describes the subsequent motion of the bullet? 1 Mark

**A** The bullet goes up and then straight back down into the cart.

**B** The bullet goes up and lands in front of the cart.

**C** The bullet goes up and lands behind the cart.

D

The bullet stops in the air as the cart is accelerating and "floats" until the cart stops accelerating.

**E** The bullet goes up and to the right of the cart.

1 Mark

- **Q66.** Which one of the following relations is true?
  - A Distance > Displacement **B** Distance < Displacement **C** Distance >= Displacement

**D** Distance <= Displacement

**Q67.** An aeroplane is flying in a horizontal direction at 600km/ hr at a height of 6kms and is advancing towards a point which is exactly over a target on earth. At that instant the pilot releases a ball which on descending the earth strike the target. The falling ball appears-

1 Mark

- **A** To the pilot in the aeroplane, as falling along a parabolic path.
- **B** To a person standing near the target, as falling exactly vertical.
- **C** To a person standing near the target, as describing a parabolic path.
- **D** To the pilot sitting in the aeroplane, as falling in a zigzag path.

**Q68.** A ball is bouncing elastically with a speed 1m/s between walls of a railway compartment of size 10m in a direction perpendicular to walls. The train is moving at a constant velocity of 10m/s parallel to the direction of motion of the ball. As seen from the ground:

1 Mark

- **A** The direction of motion of the ball changes every 10 seconds.
- **B** Speed of ball changes every 10 seconds.
- **C** Average speed of ball over any 20 second interval is fixed.
- **D** The acceleration of ball is the same as from the train.
- **Q69.** At a metro station, a girl walks up a stationary escalator in time  $t_1$ . If she remains stationary on the escalator, then the escalator take her up in time t<sub>2</sub>. The time taken by her to walk up on the moving escalator will be:

1 Mark

**A** 
$$\frac{(t_1+t_2)}{2}$$

**B** 
$$\frac{t_1t_2}{(t_2-t)}$$

**C** 
$$\frac{t_1t_2}{(t_2+t_1)}$$

**D** 
$$t_1 - t_2$$
.

**Q70.** Mark the correct statements for a particle going on a straight line:

1 Mark

- **A** If the velocity and acceleration have opposite sign, the object is slowing down.
- **B** If the position and velocity have opposite sign, the particle is moving towards the origin.
- **C** If the velocity is zero at an instant, the acceleration should also be zero at that instant.

D

If the velocity is zero for a time interval, the acceleration is zero at any instant within the time interval.

**Q71.** In one dimensional motion, instantaneous speed v satisfies  $0 \le v < v_0$ .

1 Mark

- **A** The displacement in time T must always take non-negative values.
- **B** The displacement x in time T satisfies  $v_0 T < x < v_0 T$ .
- **C** The acceleration is always a non-negative number. **D** The motion has no turning points.
- Q72. When person moves in the coordinate system from A (0, 0) to B (5, 10), to C (8, 6), what is the displacement covered?

1 Mark

- A 10 units
- **B** 5 units
- C 7 units
- **D** 15 units
- **Q73.** Consider the motion of the tip of the minute hand of a clock. In one hour:

1 Mark

- **A** The displacement is zero. **B** The distance covered is zero. **C** The average speed is zero.
- **D** The average velocity is zero.
- **Q74.** The trajectory of an object is defined as  $x = (t 4)^2$ , what is the velocity at t = 5?

1 Mark

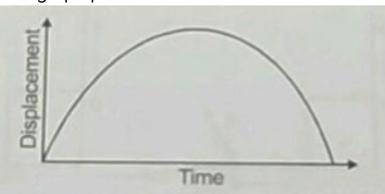
- **A** 2
- **B** 5
- **C** 1

- **D** 4
- **Q75.** Which of the following types of motion can be used for describing the motion of a car on a straight road?

1 Mark

- **A** Rectilinear
- **B** Circular
- **C** Periodic
- **D** Harmonic
- Q76. How long will a train, running at a speed of 45kmph cross a standing man, given the length of the train is 450m?

1 Mark


- **A** 100sec
- **B** 150sec
- C 50sec
- **D** 36sec
- Q77. In which coordinate system do we use distance from origin and to angles to define the position of a point in space?

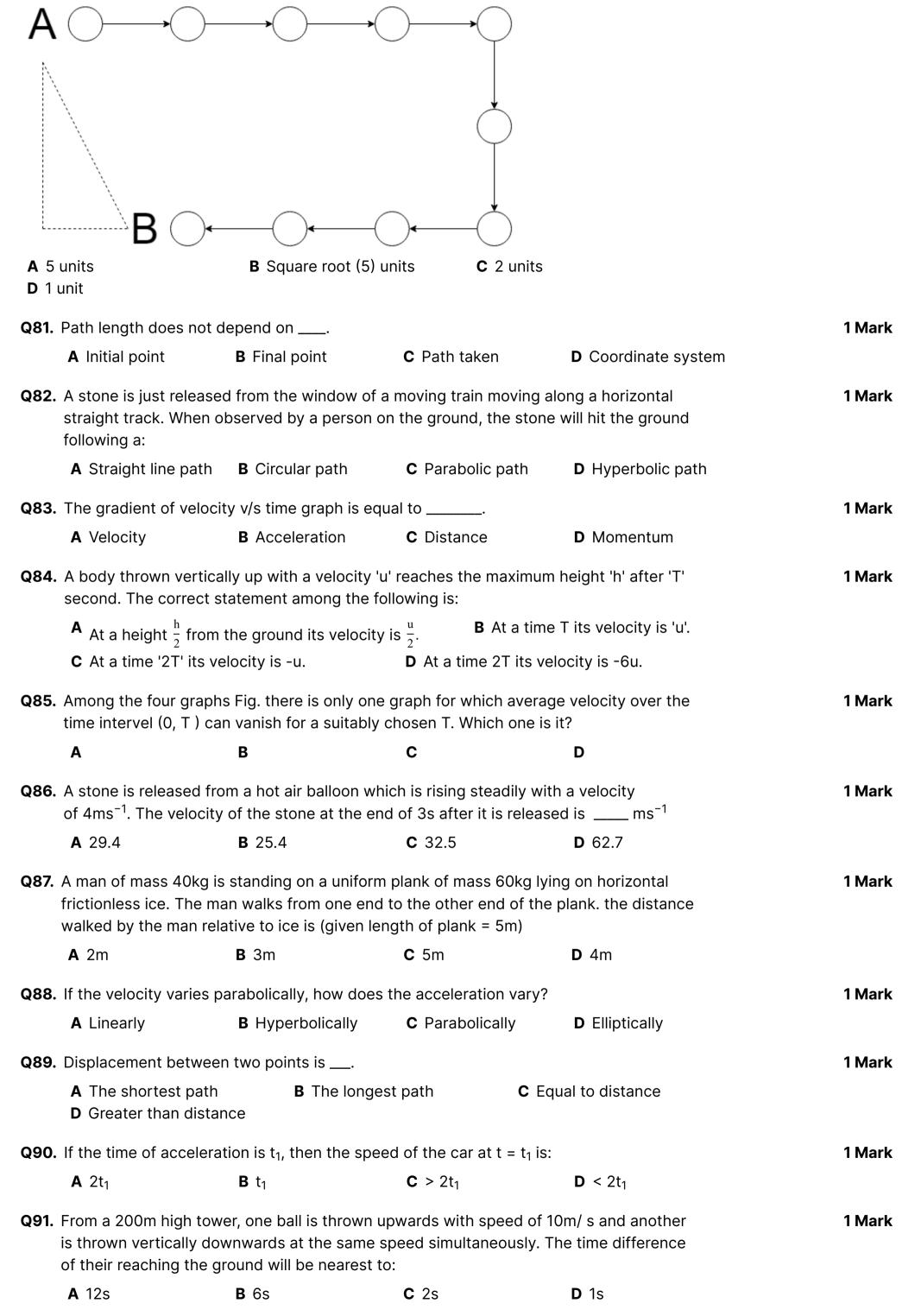
1 Mark

- **A** Cartesian
- **B** Cylindrical
- **C** Spherical
- **D** 2 D Cartesian

**Q78.** The graph predicts the condition of:

1 Mark




- **A** Body is undergoing positive acceleration. **B** Body is undergoing negative acceleration.
- **C** Uniform velocity.

- **D** Uniform speed.
- **Q79.** According to the following graph, what happens to the distance covered by the body from 0 -10 minutes?

1 Mark

- A It goes on increasing B It goes on decreasing C It first increases and then decreases
- **D** It first decreases and then increases
- **Q80.** If, in the following diagram, distance between each circle is 1 unit, what is the displacement between A and B?

1 Mark



TestLo

28/07/2023, 22:53

**Q92.** Distance does not depend on \_\_\_\_\_. 1 Mark **A** Initial point **C** Path taken **D** Speed **B** Final point **Q93.** What is the velocity for a body following the graph below at 10s? 1 Mark Distance (m) 5 Time (s)  $\mathbf{A}$  1m/s **B** 2m/s **C** 0.5m/s **D** 0.1m/s **Q94.** The velocity - time graph below represents the velocity of a toy train as it moves north 1 Mark and south with velocity near the middle of the vertical axis. During which, Interval(s) is the toy train speeding up? **B** 0 to A and D to E C A to B **D** B to D only **A** 0 to A only **E** A to B and D to E **Q95.** What will be the velocity v/s time graph of a ball falling from a height before hitting the 1 Mark ground look like? **A** A straight line with positive slope **B** A straight line with negative slope **C** A straight line with zero slope **D** A parabola 1 Mark **Q96.** The body will speed up if \_\_\_\_\_. A Velocity and acceleration are in same direction. **B** Velocity and acceleration are in opposite direction. **C** Velocity and acceleration are in perpendicular direction. **D** None of these. 1 Mark **Q97.** A particle has a velocity u towards east at t = 0. Its acceleration is towards west and is constant. Let  $x_A$  and  $x_B$  be the magnitude of displacements in the first 10 seconds and the next 10 seconds:  $\mathbf{C} x_{\mathsf{A}} > x_{\mathsf{B}}$  $\mathbf{A} \mathbf{x}_{\mathsf{A}} < \mathbf{x}_{\mathsf{B}}$  $\mathbf{B} \ \mathbf{x}_{\mathsf{A}} = \mathbf{x}_{\mathsf{B}}$ **D** The information is insufficient to decide the relation of  $x_A$  with  $x_B$ . **Q98.** A particle moves along the X-axis as  $x = u(t - 2s) + a(t - 2s)^2$ . 1 Mark **A** The initial velocity of the particle is u. **B** The accelerati?n of the particle is a **C** The acceleration of the particle is 2a. **D** At t = 2s particle is at the origin. **Q99.** Newtons law are not valid in: 1 Mark A Both inertial as well as non - inertial frame of reference. **B** A frame moving with constant velocity w.r.t. an inertial frame. **C** All reference frames which are at rest w.r.t. an inertial frame. **D** The reference frame attached to the earth. **Q100.** An elevator is going down with a constant acceleration. A coin dropped from a 1 Mark point 1.8m above the elevator floor takes one second to reach the floor. The magnitude of the acceleration of the the elevator in  $ms^{-2}$  is: Given:  $g = 10ms^{-2}$ **A** 3.6 **B** 5 **C** 7.2 **D** 6.4